Source code for cil.framework.vector_data
# Copyright 2018 United Kingdom Research and Innovation
# Copyright 2018 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors:
# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
import numpy
from .data_container import DataContainer
[docs]
class VectorData(DataContainer):
'''DataContainer to contain 1D array'''
@property
def geometry(self):
return self._geometry
@geometry.setter
def geometry(self, val):
self._geometry = val
@property
def dimension_labels(self):
if hasattr(self, 'geometry'):
return self.geometry.dimension_labels
return self._dimension_labels
@dimension_labels.setter
def dimension_labels(self, val):
if hasattr(self,'geometry'):
self.geometry.dimension_labels = val
self._dimension_labels = val
def __init__(self, array=None, **kwargs):
self.geometry = kwargs.get('geometry', None)
dtype = kwargs.get('dtype', numpy.float32)
if self.geometry is None:
if array is None:
raise ValueError('Please specify either a geometry or an array')
else:
from .vector_geometry import VectorGeometry
if len(array.shape) > 1:
raise ValueError('Incompatible size: expected 1D got {}'.format(array.shape))
out = array
self.geometry = VectorGeometry(array.shape[0], **kwargs)
self.length = self.geometry.length
else:
self.length = self.geometry.length
if array is None:
out = numpy.zeros((self.length,), dtype=dtype)
else:
if self.length == array.shape[0]:
out = array
else:
raise ValueError('Incompatible size: expecting {} got {}'.format((self.length,), array.shape))
deep_copy = True
# need to pass the geometry, othewise None
super(VectorData, self).__init__(out, deep_copy, self.geometry.dimension_labels, geometry = self.geometry)