# Copyright 2020 United Kingdom Research and Innovation
# Copyright 2020 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors:
# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
from cil.optimisation.algorithms import Algorithm
import logging
log = logging.getLogger(__name__)
[docs]
class LADMM(Algorithm):
r"""
LADMM is the Linearized Alternating Direction Method of Multipliers (LADMM).
The general form of ADMM is given by the following optimization problem:
.. math::
\min_{x} f(x) + g(y), \text{ subject to } Ax + By = b
In CIL, we have implemented the case where :math:`A = Id`, :math:`B = -K`, :math:`b = 0` which gives
.. math::
\min_x f(Kx) + g(x).
The algorithm is given by the following iteration, for :math:`k\geq 1`:
.. math::
\begin{cases}
x_{k} = \mathrm{prox}_{\tau f} \left(x_{k-1} - \dfrac{\tau}{\sigma} A_{T}\left(Ax_{k-1} - z_{k-1} + u_{k-1} \right) \right)\\
z_{k} = \mathrm{prox}_{\sigma g} \left(Ax_{k} + u_{k-1}\right) \\
u_{k} = u_{k-1} + Ax_{k} - z_{k}
\end{cases}
where :math:`\mathrm{prox}_{\tau f}` is the proximal operator of :math:`f` and :math:`\mathrm{prox}_{\sigma g}` is the proximal operator of :math:`g`.
Parameters
------------
operator: CIL Linear Operator
Operator :math:`K` in the objective function
f: CIL Function
Convex function with "simple" proximal
g: CIL Function
Convex function with "simple" proximal
sigma: float, positive, defaults to 1.
Positive step size parameter
tau: float, positive, defaults to :math:`\frac{\sigma}{\|K\|^{2}}`
Positive step size parameter
initial: DataContainer, defaults to DataContainer filled with zeros
Initial guess
Note
----
This implementation of ADMM minimises the same objective function as the Primal-Dual Hybrid Gradient (PDHG) method.
The main algorithmic difference is that in ADMM we compute the proximal of :math:`f` and :math:`g`
where in the PDHG this is a proximal-conjugate and proximal.
Note
-----
Reference (Section 8) : O’Connor, D., Vandenberghe, L. On the equivalence of the primal-dual hybrid gradient method and Douglas–Rachford splitting. Math. Program. 179, 85–108 (2020). https://doi.org/10.1007/s10107-018-1321-1
"""
def __init__(self, f=None, g=None, operator=None, \
tau = None, sigma = 1.,
initial = None, **kwargs):
"""Initialisation of the algorithm."""
super(LADMM, self).__init__(**kwargs)
self.set_up(f = f, g = g, operator = operator, tau = tau,\
sigma = sigma, initial=initial)
[docs]
def set_up(self, f, g, operator, tau = None, sigma=1., initial=None):
"""Set up of the algorithm."""
log.info("%s setting up", self.__class__.__name__)
self.f = f
self.g = g
self.operator = operator
self.tau = tau
self.sigma = sigma
if self.tau is None:
normK = self.operator.norm()
self.tau = self.sigma / normK ** 2
if initial is None:
self.x = self.operator.domain_geometry().allocate(0)
else:
self.x = initial.copy()
# allocate space for operator direct & adjoint
self.tmp_dir = self.operator.range_geometry().allocate(0)
self.tmp_adj = self.operator.domain_geometry().allocate(0)
self.z = self.operator.range_geometry().allocate(0)
self.u = self.operator.range_geometry().allocate(0)
self.configured = True
log.info("%s configured", self.__class__.__name__)
[docs]
def update(self):
"""Performs a single iteration of the LADMM algorithm"""
self.tmp_dir += self.u
self.tmp_dir -= self.z
self.operator.adjoint(self.tmp_dir, out = self.tmp_adj)
self.x.sapyb(1, self.tmp_adj, -(self.tau/self.sigma), out=self.x)
# apply proximal of f
tmp = self.f.proximal(self.x, self.tau)
self.operator.direct(tmp, out=self.tmp_dir)
# store the result in x
self.x.fill(tmp)
del tmp
self.u += self.tmp_dir
# apply proximal of g
self.g.proximal(self.u, self.sigma, out = self.z)
# update
self.u -= self.z
[docs]
def update_objective(self):
"""Update the objective function value"""
self.loss.append(self.f(self.x) + self.g(self.operator.direct(self.x)) )