Source code for cil.optimisation.algorithms.ADMM

#  Copyright 2020 United Kingdom Research and Innovation
#  Copyright 2020 The University of Manchester
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
# Authors:
# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt

from cil.optimisation.algorithms import Algorithm
import logging

log = logging.getLogger(__name__)


[docs] class LADMM(Algorithm): r""" LADMM is the Linearized Alternating Direction Method of Multipliers (LADMM). The general form of ADMM is given by the following optimization problem: .. math:: \min_{x} f(x) + g(y), \text{ subject to } Ax + By = b In CIL, we have implemented the case where :math:`A = Id`, :math:`B = -K`, :math:`b = 0` which gives .. math:: \min_x f(Kx) + g(x). The algorithm is given by the following iteration, for :math:`k\geq 1`: .. math:: \begin{cases} x_{k} = \mathrm{prox}_{\tau f} \left(x_{k-1} - \dfrac{\tau}{\sigma} A_{T}\left(Ax_{k-1} - z_{k-1} + u_{k-1} \right) \right)\\ z_{k} = \mathrm{prox}_{\sigma g} \left(Ax_{k} + u_{k-1}\right) \\ u_{k} = u_{k-1} + Ax_{k} - z_{k} \end{cases} where :math:`\mathrm{prox}_{\tau f}` is the proximal operator of :math:`f` and :math:`\mathrm{prox}_{\sigma g}` is the proximal operator of :math:`g`. Parameters ------------ operator: CIL Linear Operator Operator :math:`K` in the objective function f: CIL Function Convex function with "simple" proximal g: CIL Function Convex function with "simple" proximal sigma: float, positive, defaults to 1. Positive step size parameter tau: float, positive, defaults to :math:`\frac{\sigma}{\|K\|^{2}}` Positive step size parameter initial: DataContainer, defaults to DataContainer filled with zeros Initial guess Note ---- This implementation of ADMM minimises the same objective function as the Primal-Dual Hybrid Gradient (PDHG) method. The main algorithmic difference is that in ADMM we compute the proximal of :math:`f` and :math:`g` where in the PDHG this is a proximal-conjugate and proximal. Note ----- Reference (Section 8) : O’Connor, D., Vandenberghe, L. On the equivalence of the primal-dual hybrid gradient method and Douglas–Rachford splitting. Math. Program. 179, 85–108 (2020). https://doi.org/10.1007/s10107-018-1321-1 """ def __init__(self, f=None, g=None, operator=None, \ tau = None, sigma = 1., initial = None, **kwargs): """Initialisation of the algorithm.""" super(LADMM, self).__init__(**kwargs) self.set_up(f = f, g = g, operator = operator, tau = tau,\ sigma = sigma, initial=initial)
[docs] def set_up(self, f, g, operator, tau = None, sigma=1., initial=None): """Set up of the algorithm.""" log.info("%s setting up", self.__class__.__name__) self.f = f self.g = g self.operator = operator self.tau = tau self.sigma = sigma if self.tau is None: normK = self.operator.norm() self.tau = self.sigma / normK ** 2 if initial is None: self.x = self.operator.domain_geometry().allocate(0) else: self.x = initial.copy() # allocate space for operator direct & adjoint self.tmp_dir = self.operator.range_geometry().allocate(0) self.tmp_adj = self.operator.domain_geometry().allocate(0) self.z = self.operator.range_geometry().allocate(0) self.u = self.operator.range_geometry().allocate(0) self.configured = True log.info("%s configured", self.__class__.__name__)
[docs] def update(self): """Performs a single iteration of the LADMM algorithm""" self.tmp_dir += self.u self.tmp_dir -= self.z self.operator.adjoint(self.tmp_dir, out = self.tmp_adj) self.x.sapyb(1, self.tmp_adj, -(self.tau/self.sigma), out=self.x) # apply proximal of f tmp = self.f.proximal(self.x, self.tau) self.operator.direct(tmp, out=self.tmp_dir) # store the result in x self.x.fill(tmp) del tmp self.u += self.tmp_dir # apply proximal of g self.g.proximal(self.u, self.sigma, out = self.z) # update self.u -= self.z
[docs] def update_objective(self): """Update the objective function value""" self.loss.append(self.f(self.x) + self.g(self.operator.direct(self.x)) )