Source code for cil.optimisation.algorithms.ADMM

#  Copyright 2020 United Kingdom Research and Innovation
#  Copyright 2020 The University of Manchester
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
# Authors:
# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt

from cil.optimisation.algorithms import Algorithm
import logging

log = logging.getLogger(__name__)


[docs] class LADMM(Algorithm): ''' LADMM is the Linearized Alternating Direction Method of Multipliers (LADMM) General form of ADMM : min_{x} f(x) + g(y), subject to Ax + By = b Case: A = Id, B = -K, b = 0 ==> min_x f(Kx) + g(x) The quadratic term in the augmented Lagrangian is linearized for the x-update. Main algorithmic difference is that in ADMM we compute two proximal subproblems, where in the PDHG a proximal and proximal conjugate. Reference (Section 8) : https://link.springer.com/content/pdf/10.1007/s10107-018-1321-1.pdf x^{k} = prox_{\tau f } (x^{k-1} - tau/sigma A^{T}(Ax^{k-1} - z^{k-1} + u^{k-1} ) z^{k} = prox_{\sigma g} (Ax^{k} + u^{k-1}) u^{k} = u^{k-1} + Ax^{k} - z^{k} ''' def __init__(self, f=None, g=None, operator=None, \ tau = None, sigma = 1., initial = None, **kwargs): '''Initialisation of the algorithm :param operator: a Linear Operator :param f: Convex function with "simple" proximal :param g: Convex function with "simple" proximal :param sigma: Positive step size parameter :param tau: Positive step size parameter :param initial: Initial guess ( Default initial_guess = 0)''' super(LADMM, self).__init__(**kwargs) self.set_up(f = f, g = g, operator = operator, tau = tau,\ sigma = sigma, initial=initial)
[docs] def set_up(self, f, g, operator, tau = None, sigma=1., initial=None): log.info("%s setting up", self.__class__.__name__) if sigma is None and tau is None: raise ValueError('Need tau <= sigma / ||K||^2') self.f = f self.g = g self.operator = operator self.tau = tau self.sigma = sigma if self.tau is None: normK = self.operator.norm() self.tau = self.sigma / normK ** 2 if initial is None: self.x = self.operator.domain_geometry().allocate() else: self.x = initial.copy() # allocate space for operator direct & adjoint self.tmp_dir = self.operator.range_geometry().allocate() self.tmp_adj = self.operator.domain_geometry().allocate() self.z = self.operator.range_geometry().allocate() self.u = self.operator.range_geometry().allocate() self.configured = True log.info("%s configured", self.__class__.__name__)
[docs] def update(self): self.tmp_dir += self.u self.tmp_dir -= self.z self.operator.adjoint(self.tmp_dir, out = self.tmp_adj) self.x.sapyb(1, self.tmp_adj, -(self.tau/self.sigma), out=self.x) # apply proximal of f tmp = self.f.proximal(self.x, self.tau) self.operator.direct(tmp, out=self.tmp_dir) # store the result in x self.x.fill(tmp) del tmp self.u += self.tmp_dir # apply proximal of g self.g.proximal(self.u, self.sigma, out = self.z) # update self.u -= self.z
[docs] def update_objective(self): self.loss.append(self.f(self.x) + self.g(self.operator.direct(self.x)) )