# Copyright 2019 United Kingdom Research and Innovation
# Copyright 2019 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors:
# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
from itertools import count
from numbers import Integral
from typing import List, Optional
from warnings import warn
import numpy as np
from cil.optimisation.utilities.callbacks import Callback, LogfileCallback, _OldCallback, ProgressCallback
[docs]
class Algorithm:
r"""Base class providing minimal infrastructure for iterative algorithms.
An iterative algorithm is designed to solve an optimization problem by repeatedly refining a solution. In CIL, we use iterative algorithms to minimize an objective function, often referred to as a loss. The process begins with an initial guess, and with each iteration, the algorithm updates the current solution based on the results of previous iterations (previous iterates). Iterative algorithms typically continue until a stopping criterion is met, indicating that an optimal or sufficiently good solution has been found. In CIL, stopping criteria can be implemented using a callback function (`cil.optimisation.utilities.callbacks`).
The user is required to implement the :code:`set_up`, :code:`__init__`, :code:`update` and :code:`update_objective` methods.
The method :code:`run` is available to run :code:`n` iterations. The method accepts :code:`callbacks`: a list of callables, each of which receive the current Algorithm object (which in turn contains the iteration number and the actual objective value) and can be used to trigger print to screens and other user interactions. The :code:`run` method will stop when the stopping criterion is met or `StopIteration` is raised.
Parameters
----------
update_objective_interval: int, optional, default 1
The objective (or loss) is calculated and saved every `update_objective_interval`. 1 means every iteration, 2 every 2 iterations and so forth. This is by default 1 and should be increased when evaluating the objective is computationally expensive.
"""
def __init__(self, update_objective_interval=1, max_iteration=None, log_file=None):
self.iteration = -1
self.__max_iteration = 1
if max_iteration is not None:
warn("use `Algorithm.run(iterations)` instead of `Algorithm(max_iteration)`", DeprecationWarning, stacklevel=2)
self.__max_iteration = max_iteration
self.__loss = []
self.memopt = False
self.configured = False
self._iteration = []
self.update_objective_interval = update_objective_interval
# self.x = None
self.iter_string = 'Iter'
if log_file is not None:
warn("use `run(callbacks=[LogfileCallback(log_file)])` instead of `log_file`",
DeprecationWarning, stacklevel=2)
self.__log_file = log_file
[docs]
def set_up(self, *args, **kwargs):
'''Set up the algorithm'''
raise NotImplementedError
[docs]
def update(self):
'''A single iteration of the algorithm'''
raise NotImplementedError
[docs]
def should_stop(self):
'''default stopping criterion: number of iterations
The user can change this in concrete implementation of iterative algorithms.'''
return self.iteration > self.max_iteration
def __set_up_logger(self, *_, **__):
"""Do not use: this is being deprecated"""
warn("use `run(callbacks=[LogfileCallback(log_file)])` instead", DeprecationWarning, stacklevel=2)
[docs]
def max_iteration_stop_criterion(self):
"""Do not use: this is being deprecated"""
warn("use `should_stop()` instead of `max_iteration_stop_criterion()`", DeprecationWarning, stacklevel=2)
return self.iteration > self.max_iteration
def __iter__(self):
'''Algorithm is an iterable'''
return self
def __next__(self):
'''Algorithm is an iterable
This method triggers :code:`update()` and :code:`update_objective()`
'''
if self.should_stop():
raise StopIteration
if self.iteration == -1 and self.update_objective_interval > 0:
self._iteration.append(self.iteration)
self.update_objective()
self.iteration += 1
return self.iteration
if not self.configured:
raise ValueError('Algorithm not configured correctly. Please run set_up.')
self.update()
self.iteration += 1
self._update_previous_solution()
if self.iteration >= 0 and self.update_objective_interval > 0 and\
self.iteration % self.update_objective_interval == 0:
self._iteration.append(self.iteration)
self.update_objective()
return self.iteration
def _update_previous_solution(self):
r""" An optional but common function that can be implemented by child classes to update a stored previous solution with the current one.
Best practice for memory efficiency would be to do this by the swapping of pointers:
.. highlight:: python
.. code-block:: python
tmp = self.x_old
self.x_old = self.x
self.x = tmp
"""
pass
[docs]
def get_output(self):
r""" Returns the current solution.
Returns
-------
DataContainer
The current solution
"""
return self.x
def _provable_convergence_condition(self):
r""" Checks if the algorithm set-up (e.g. chosen step-sizes or other parameters) meets a mathematical convergence criterion.
Returns
-------
bool: Outcome of the convergence check
"""
raise NotImplementedError(" Convergence criterion is not implemented for this algorithm. ")
[docs]
def is_provably_convergent(self):
r""" Check if the algorithm is convergent based on the provable convergence criterion.
Returns
-------
Boolean
Outcome of the convergence check
"""
return self._provable_convergence_condition()
@property
def solution(self):
" Returns the current solution. "
return self.get_output()
[docs]
def get_last_loss(self, return_all=False):
r'''Returns the last stored value of the loss function. "Loss" is an alias for "objective value". If `update_objective_interval` is 1 it is the value of the objective at the current iteration. If update_objective_interval > 1 it is the last stored value.
Parameters
----------
return_all: Boolean, default is False
If True, returns all the stored loss functions
Returns
-------
Float
Last stored value of the loss function
'''
try:
objective = self.__loss[-1]
except IndexError:
objective = np.nan
if isinstance(objective, list):
return objective if return_all else objective[0]
return [objective, np.nan, np.nan] if return_all else objective
get_last_objective = get_last_loss # alias
[docs]
def update_objective(self):
'''calculates the objective with the current solution'''
raise NotImplementedError
@property
def iterations(self):
'''returns the iterations at which the objective has been evaluated'''
return self._iteration
@property
def loss(self):
'''returns a list of the values of the objective (alias of loss) during the iteration
The length of this list may be shorter than the number of iterations run when the `update_objective_interval` > 1
'''
return self.__loss
objective = loss # alias
@property
def max_iteration(self):
'''gets the maximum number of iterations'''
return self.__max_iteration
@max_iteration.setter
def max_iteration(self, value):
'''sets the maximum number of iterations'''
assert isinstance(value, Integral) or np.isposinf(value)
self.__max_iteration = value
@property
def update_objective_interval(self):
'''gets the update_objective_interval'''
return self.__update_objective_interval
@update_objective_interval.setter
def update_objective_interval(self, value):
'''sets the update_objective_interval'''
if not isinstance(value, Integral) or value < 0:
raise ValueError('interval must be an integer >= 0')
self.__update_objective_interval = value
[docs]
def run(self, iterations=None, callbacks: Optional[List[Callback]]=None, verbose=1, **kwargs):
r"""run upto :code:`iterations` with callbacks/logging.
For a demonstration of callbacks see https://github.com/TomographicImaging/CIL-Demos/blob/main/misc/callback_demonstration.ipynb
Parameters
-----------
iterations: int, default is None
Number of iterations to run. If not set the algorithm will run until :code:`should_stop()` is reached
callbacks: list of callables, default is Defaults to :code:`[ProgressCallback(verbose)]`
List of callables which are passed the current Algorithm object each iteration. Defaults to :code:`[ProgressCallback(verbose)]`.
verbose: 0=quiet, 1=info, 2=debug
Passed to the default callback to determine the verbosity of the printed output.
"""
if 'print_interval' in kwargs:
warn("use `TextProgressCallback(miniters)` instead of `run(print_interval)`",
DeprecationWarning, stacklevel=2)
if callbacks is None:
callbacks = [ProgressCallback(verbose=verbose)]
# transform old-style callbacks into new
callback = kwargs.get('callback', None)
if callback is not None:
callbacks.append(_OldCallback(callback, verbose=verbose))
if hasattr(self, '__log_file'):
callbacks.append(LogfileCallback(self.__log_file, verbose=verbose))
if self.should_stop():
print("Stop criterion has been reached.")
if iterations is None:
warn("`run()` missing `iterations`", DeprecationWarning, stacklevel=2)
iterations = self.max_iteration
if self.iteration == -1 and self.update_objective_interval>0:
iterations+=1
# call `__next__` upto `iterations` times or until `StopIteration` is raised
self.max_iteration = self.iteration + iterations
iters = (count(self.iteration) if np.isposinf(self.max_iteration)
else range(self.iteration, self.max_iteration))
for _ in zip(iters, self):
try:
for callback in callbacks:
callback(self)
except StopIteration:
break
[docs]
def objective_to_dict(self, verbose=False):
"""Internal function to save and print objective functions"""
obj = self.get_last_objective(return_all=verbose)
if isinstance(obj, list) and len(obj) == 3:
if not np.isnan(obj[1:]).all():
return {'primal': obj[0], 'dual': obj[1], 'primal_dual': obj[2]}
obj = obj[0]
return {'objective': obj}
[docs]
def objective_to_string(self, verbose=False):
"""Do not use: this is being deprecated"""
warn("consider using `run(callbacks=[LogfileCallback(log_file)])` instead", DeprecationWarning, stacklevel=2)
return str(self.objective_to_dict(verbose=verbose))
[docs]
def verbose_output(self, *_, **__):
"""Do not use: this is being deprecated"""
warn("use `run(callbacks=[ProgressCallback()])` instead", DeprecationWarning, stacklevel=2)