# Copyright 2019 United Kingdom Research and Innovation
# Copyright 2019 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors:
# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
import numpy
from cil.optimisation.algorithms import Algorithm
import logging
from cil.optimisation.utilities import ConstantStepSize, ArmijoStepSizeRule, StepSizeRule
from warnings import warn
from numbers import Real
log = logging.getLogger(__name__)
[docs]
class GD(Algorithm):
"""Gradient Descent algorithm
Parameters
----------
initial: DataContainer (e.g. ImageData)
The initial point for the optimisation
objective_function: CIL function (:meth:`~cil.optimisation.functions.Function`. ) with a defined gradient method
The function to be minimised.
step_size: positive real float or subclass of :meth:`~cil.optimisation.utilities.StepSizeRule`, default = None
If you pass a float this will be used as a constant step size. If left as None and do not pass a step_size_rule then the Armijio rule will be used to perform backtracking to choose a step size at each iteration. If a child class of :meth:`cil.optimisation.utilities.StepSizeRule`' is passed then it's method `get_step_size` is called for each update.
preconditioner: class with a `apply` method or a function that takes an initialised CIL function as an argument and modifies a provided `gradient`.
This could be a custom `preconditioner` or one provided in :meth:`~cil.optimisation.utilities.preconditioner`. If None is passed then `self.gradient_update` will remain unmodified.
rtol: positive float, default 1e-5
optional parameter defining the relative tolerance comparing the current objective function to 0, default 1e-5, see numpy.isclose
atol: positive float, default 1e-8
optional parameter defining the absolute tolerance comparing the current objective function to 0, default 1e-8, see numpy.isclose
"""
def __init__(self, initial=None, objective_function=None, step_size=None, rtol=1e-5, atol=1e-8, preconditioner=None, **kwargs):
'''GD algorithm creator
'''
self.alpha = kwargs.pop('alpha', None)
self.beta = kwargs.pop('beta', None)
super().__init__(**kwargs)
if self.alpha is not None or self.beta is not None:
warn('To modify the parameters for the Armijo rule please use `step_size_rule=ArmijoStepSizeRule(alpha, beta, kmax)`. The arguments `alpha` and `beta` will be deprecated. ', DeprecationWarning, stacklevel=2)
self.rtol = rtol
self.atol = atol
if initial is not None and objective_function is not None:
self.set_up(initial=initial, objective_function=objective_function,
step_size=step_size, preconditioner=preconditioner)
[docs]
def set_up(self, initial, objective_function, step_size, preconditioner):
'''initialisation of the algorithm
Parameters
----------
initial: DataContainer (e.g. ImageData)
The initial point for the optimisation
objective_function: CIL function with a defined gradient
The function to be minimised.
step_size: positive real float or subclass of :meth:`~cil.optimisation.utilities.StepSizeRule`, default = None
If you pass a float this will be used as a constant step size. If left as None and do not pass a step_size_rule then the Armijio rule will be used to perform backtracking to choose a step size at each iteration. If a child class of :meth:`cil.optimisation.utilities.StepSizeRule`' is passed then it's method `get_step_size` is called for each update.
preconditioner: class with a `apply` method or a function that takes an initialised CIL function as an argument and modifies a provided `gradient`.
This could be a custom `preconditioner` or one provided in :meth:`~cil.optimisation.utilities.preconditioner`. If None is passed then `self.gradient_update` will remain unmodified.
'''
log.info("%s setting up", self.__class__.__name__)
self.x = initial.copy()
self._objective_function = objective_function
if step_size is None:
self.step_size_rule = ArmijoStepSizeRule(
alpha=self.alpha, beta=self.beta)
elif isinstance(step_size, Real):
self.step_size_rule = ConstantStepSize(step_size)
elif isinstance(step_size, StepSizeRule):
self.step_size_rule = step_size
else:
raise TypeError(
'`step_size` must be `None`, a Real float or a child class of :meth:`cil.optimisation.utilities.StepSizeRule`')
self.gradient_update = initial.copy()
self.configured = True
self.preconditioner = preconditioner
log.info("%s configured", self.__class__.__name__)
[docs]
def update(self):
'''Performs a single iteration of the gradient descent algorithm'''
self._objective_function.gradient(self.x, out=self.gradient_update)
if self.preconditioner is not None:
self.preconditioner.apply(
self, self.gradient_update, out=self.gradient_update)
step_size = self.step_size_rule.get_step_size(self)
self.x.sapyb(1.0, self.gradient_update, -step_size, out=self.x)
[docs]
def update_objective(self):
self.loss.append(self._objective_function(self.solution))
[docs]
def should_stop(self):
'''Stopping criterion for the gradient descent algorithm '''
return super().should_stop() or \
numpy.isclose(self.get_last_objective(), 0., rtol=self.rtol,
atol=self.atol, equal_nan=False)
@property
def step_size(self):
if isinstance(self.step_size_rule, ConstantStepSize):
return self.step_size_rule.step_size
else:
raise TypeError(
"There is not a constant step size, it is set by a step-size rule")
[docs]
def calculate_objective_function_at_point(self, x):
""" Calculates the objective at a given point x
.. math:: f(x) + g(x)
Parameters
----------
x : DataContainer
"""
return self._objective_function(x)
@property
def objective_function(self):
warn('The attribute `objective_function` will be deprecated in the future. Please use `calculate_objective_function_at_point` instead.', DeprecationWarning, stacklevel=2)
return self._objective_function