Source code for cil.optimisation.algorithms.GD

#  Copyright 2019 United Kingdom Research and Innovation
#  Copyright 2019 The University of Manchester
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
# Authors:
# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt

import numpy
from cil.optimisation.algorithms import Algorithm
import logging
from cil.optimisation.utilities import ConstantStepSize, ArmijoStepSizeRule, StepSizeRule
from warnings import warn
from numbers import Real

log = logging.getLogger(__name__)


[docs] class GD(Algorithm): """Gradient Descent algorithm Parameters ---------- initial: DataContainer (e.g. ImageData) The initial point for the optimisation objective_function: CIL function (:meth:`~cil.optimisation.functions.Function`. ) with a defined gradient method The function to be minimised. step_size: positive real float or subclass of :meth:`~cil.optimisation.utilities.StepSizeRule`, default = None If you pass a float this will be used as a constant step size. If left as None and do not pass a step_size_rule then the Armijio rule will be used to perform backtracking to choose a step size at each iteration. If a child class of :meth:`cil.optimisation.utilities.StepSizeRule`' is passed then it's method `get_step_size` is called for each update. preconditioner: class with a `apply` method or a function that takes an initialised CIL function as an argument and modifies a provided `gradient`. This could be a custom `preconditioner` or one provided in :meth:`~cil.optimisation.utilities.preconditioner`. If None is passed then `self.gradient_update` will remain unmodified. rtol: positive float, default 1e-5 optional parameter defining the relative tolerance comparing the current objective function to 0, default 1e-5, see numpy.isclose atol: positive float, default 1e-8 optional parameter defining the absolute tolerance comparing the current objective function to 0, default 1e-8, see numpy.isclose """ def __init__(self, initial=None, objective_function=None, step_size=None, rtol=1e-5, atol=1e-8, preconditioner=None, **kwargs): '''GD algorithm creator ''' self.alpha = kwargs.pop('alpha', None) self.beta = kwargs.pop('beta', None) super().__init__(**kwargs) if self.alpha is not None or self.beta is not None: warn('To modify the parameters for the Armijo rule please use `step_size_rule=ArmijoStepSizeRule(alpha, beta, kmax)`. The arguments `alpha` and `beta` will be deprecated. ', DeprecationWarning, stacklevel=2) self.rtol = rtol self.atol = atol if initial is not None and objective_function is not None: self.set_up(initial=initial, objective_function=objective_function, step_size=step_size, preconditioner=preconditioner)
[docs] def set_up(self, initial, objective_function, step_size, preconditioner): '''initialisation of the algorithm Parameters ---------- initial: DataContainer (e.g. ImageData) The initial point for the optimisation objective_function: CIL function with a defined gradient The function to be minimised. step_size: positive real float or subclass of :meth:`~cil.optimisation.utilities.StepSizeRule`, default = None If you pass a float this will be used as a constant step size. If left as None and do not pass a step_size_rule then the Armijio rule will be used to perform backtracking to choose a step size at each iteration. If a child class of :meth:`cil.optimisation.utilities.StepSizeRule`' is passed then it's method `get_step_size` is called for each update. preconditioner: class with a `apply` method or a function that takes an initialised CIL function as an argument and modifies a provided `gradient`. This could be a custom `preconditioner` or one provided in :meth:`~cil.optimisation.utilities.preconditioner`. If None is passed then `self.gradient_update` will remain unmodified. ''' log.info("%s setting up", self.__class__.__name__) self.x = initial.copy() self._objective_function = objective_function if step_size is None: self.step_size_rule = ArmijoStepSizeRule( alpha=self.alpha, beta=self.beta) elif isinstance(step_size, Real): self.step_size_rule = ConstantStepSize(step_size) elif isinstance(step_size, StepSizeRule): self.step_size_rule = step_size else: raise TypeError( '`step_size` must be `None`, a Real float or a child class of :meth:`cil.optimisation.utilities.StepSizeRule`') self.gradient_update = initial.copy() self.configured = True self.preconditioner = preconditioner log.info("%s configured", self.__class__.__name__)
[docs] def update(self): '''Performs a single iteration of the gradient descent algorithm''' self._objective_function.gradient(self.x, out=self.gradient_update) if self.preconditioner is not None: self.preconditioner.apply( self, self.gradient_update, out=self.gradient_update) step_size = self.step_size_rule.get_step_size(self) self.x.sapyb(1.0, self.gradient_update, -step_size, out=self.x)
[docs] def update_objective(self): self.loss.append(self._objective_function(self.solution))
[docs] def should_stop(self): '''Stopping criterion for the gradient descent algorithm ''' return super().should_stop() or \ numpy.isclose(self.get_last_objective(), 0., rtol=self.rtol, atol=self.atol, equal_nan=False)
@property def step_size(self): if isinstance(self.step_size_rule, ConstantStepSize): return self.step_size_rule.step_size else: raise TypeError( "There is not a constant step size, it is set by a step-size rule")
[docs] def calculate_objective_function_at_point(self, x): """ Calculates the objective at a given point x .. math:: f(x) + g(x) Parameters ---------- x : DataContainer """ return self._objective_function(x)
@property def objective_function(self): warn('The attribute `objective_function` will be deprecated in the future. Please use `calculate_objective_function_at_point` instead.', DeprecationWarning, stacklevel=2) return self._objective_function