Source code for cil.optimisation.functions.L1Norm

#  Copyright 2019 United Kingdom Research and Innovation
#  Copyright 2019 The University of Manchester
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
# Authors:
# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt

from cil.optimisation.functions import Function
from cil.framework import BlockDataContainer
import numpy as np
import warnings

def soft_shrinkage(x, tau, out=None):

    r"""Returns the value of the soft-shrinkage operator at x. This is used for the calculation of the proximal. 
    
    .. math:: soft_shrinkage (x) = \begin{cases}
                x-\tau, \mbox{if } x > \tau \
                    x+\tau, \mbox{if } x < -\tau \
                0, \mbox{otherwise}
                \end{cases}.
   



    Parameters
    -----------
    x : DataContainer
        where to evaluate the soft-shrinkage operator.
    tau : float, non-negative real,  numpy ndarray, DataContainer
    out : DataContainer, default None
        where to store the result. If None, a new DataContainer is created.

    Returns
    --------
    the value of the soft-shrinkage operator at x: DataContainer.
    
    Note
    ------
    Note that this function can deal with complex inputs, defining the `sgn` function as: 
    .. math:: sgn (z) = \begin{cases}
                0, \mbox{if } z = 0 \
                \frac{z}{|z|}, \mbox{otherwise}
                \end{cases}.
                
    """
    if np.min(tau) < 0:
        warnings.warn(
                "tau should be non-negative!", UserWarning)
    if np.linalg.norm(np.imag(tau))>0:
        raise ValueError("tau should be real!")

    # get the sign of the input
    dsign = np.exp(1j*np.angle(x.as_array())) if np.iscomplexobj(x) else x.sign()

    if out is None:
        if x.dtype in [np.csingle, np.cdouble, np.clongdouble]:
            out = x * 0
            outarr = out.as_array()
            outarr.real = x.abs().as_array()
            out.fill(outarr)
        else:
            out = x.abs()
    else:
        if x.dtype in [np.csingle, np.cdouble, np.clongdouble]:
            outarr = out.as_array()
            outarr.real = x.abs().as_array()
            outarr.imag = 0
            out.fill(outarr)
        else:
            x.abs(out = out)
    out -= tau
    out.maximum(0, out = out)
    out *= dsign
    return out


[docs] class L1Norm(Function): r"""L1Norm function Consider the following cases: a) .. math:: F(x) = ||x||_{1} b) .. math:: F(x) = ||x - b||_{1} In the weighted case, :math:`w` is an array of non-negative weights. a) .. math:: F(x) = ||x||_{L^1(w)} b) .. math:: F(x) = ||x - b||_{L^1(w)} with :math:`||x||_{L^1(w)} = || x w||_1 = \sum_{i=1}^{n} |x_i| w_i`. Parameters ----------- weight: DataContainer, numpy ndarray, default None Array of non-negative weights. If :code:`None` returns the L1 Norm. b: DataContainer, default None Translation of the function. """ def __init__(self, b=None, weight=None): super(L1Norm, self).__init__(L=None) if weight is None: self.function = _L1Norm(b=b) else: self.function = _WeightedL1Norm(b=b, weight=weight) def __call__(self, x): r"""Returns the value of the L1Norm function at x. .. math:: f(x) = ||x - b||_{L^1(w)} """ return self.function(x)
[docs] def convex_conjugate(self, x): r"""Returns the value of the convex conjugate of the L1 Norm function at x. This is the indicator of the unit :math:`L^{\infty}` norm: a) .. math:: F^{*}(x^{*}) = \mathbb{I}_{\{\|\cdot\|_{\infty}\leq1\}}(x^{*}) b) .. math:: F^{*}(x^{*}) = \mathbb{I}_{\{\|\cdot\|_{\infty}\leq1\}}(x^{*}) + \langle x^{*},b\rangle .. math:: \mathbb{I}_{\{\|\cdot\|_{\infty}\leq1\}}(x^{*}) = \begin{cases} 0, \mbox{if } \|x^{*}\|_{\infty}\leq1\\ \infty, \mbox{otherwise} \end{cases} In the weighted case the convex conjugate is the indicator of the unit :math:`L^{\infty}(w^{-1})` norm. See: https://math.stackexchange.com/questions/1533217/convex-conjugate-of-l1-norm-function-with-weight a) .. math:: F^{*}(x^{*}) = \mathbb{I}_{\{\|\cdot\|_{L^\infty(w^{-1})}\leq 1\}}(x^{*}) b) .. math:: F^{*}(x^{*}) = \mathbb{I}_{\{\|\cdot\|_{L^\infty(w^{-1})}\leq 1\}}(x^{*}) + \langle x^{*},b\rangle with :math:`\|x\|_{L^\infty(w^{-1})} = \max_{i} \frac{|x_i|}{w_i}` and possible cases of 0/0 are defined to be 1.. Parameters ----------- x : DataContainer where to evaluate the convex conjugate of the L1 Norm function. Returns -------- the value of the convex conjugate of the WeightedL1Norm function at x: DataContainer. """ return self.function.convex_conjugate(x)
[docs] def proximal(self, x, tau, out=None): r"""Returns the value of the proximal operator of the L1 Norm function at x with scaling parameter `tau`. Consider the following cases: a) .. math:: \mathrm{prox}_{\tau F}(x) = \mathrm{ShinkOperator}_\tau(x) b) .. math:: \mathrm{prox}_{\tau F}(x) = \mathrm{ShinkOperator}_\tau(x - b) + b where, .. math :: \mathrm{prox}_{\tau F}(x) = \mathrm{ShinkOperator}(x) = sgn(x) * \max\{ |x| - \tau, 0 \} The weighted case follows from Example 6.23 in Chapter 6 of "First-Order Methods in Optimization" by Amir Beck, SIAM 2017 https://archive.siam.org/books/mo25/mo25_ch6.pdf a) .. math:: \mathrm{prox}_{\tau F}(x) = \mathrm{ShinkOperator}_{\tau*w}(x) b) .. math:: \mathrm{prox}_{\tau F}(x) = \mathrm{ShinkOperator}_{\tau*w}(x - b) + b Parameters ----------- x: DataContainer tau: float, real, ndarray, DataContainer out: DataContainer, default None If not None, the result will be stored in this object. Returns -------- The value of the proximal operator of the L1 norm function at x: DataContainer. """ return self.function.proximal(x, tau, out=out)
class _L1Norm(Function): r"""L1Norm function Consider the following cases: a) .. math:: F(x) = ||x||_{1} b) .. math:: F(x) = ||x - b||_{1} """ def __init__(self, **kwargs): '''creator Cases considered (with/without data): a) :math:`f(x) = ||x||_{1}` b) :math:`f(x) = ||x - b||_{1}` :param b: translation of the function :type b: :code:`DataContainer`, optional ''' super().__init__() self.b = kwargs.get('b',None) def __call__(self, x): y = x if self.b is not None: y = x - self.b return y.abs().sum() def convex_conjugate(self,x): if x.abs().max() - 1 <=0: if self.b is not None: return self.b.dot(x) else: return 0. return np.inf def proximal(self, x, tau, out=None): if self.b is not None: ret = soft_shrinkage(x - self.b, tau, out=out) ret += self.b else: ret = soft_shrinkage(x, tau, out=out) return ret class _WeightedL1Norm(Function): def __init__(self, weight, b=None): super().__init__() self.weight = weight self.b = b if np.min(weight) < 0: raise ValueError("Weights should be non-negative!") if np.linalg.norm(np.imag(weight))>0: raise ValueError("Weights should be real!") def __call__(self, x): y = x*self.weight if self.b is not None: y -= self.b*self.weight return y.abs().sum() def convex_conjugate(self,x): if np.any(x.abs() > self.weight): # This handles weight being zero problems return np.inf else: if self.b is not None: return self.b.dot(x) else: return 0. def proximal(self, x, tau, out=None): ret = _L1Norm.proximal(self, x, tau*self.weight, out=out) return ret
[docs] class MixedL11Norm(Function): r"""MixedL11Norm function .. math:: F(x) = ||x||_{1,1} = \sum |x_{1}| + |x_{2}| + \cdots + |x_{n}| Note ---- MixedL11Norm is a separable function, therefore it can also be defined using the :class:`BlockFunction`. See Also -------- L1Norm, MixedL21Norm """ def __init__(self, **kwargs): super(MixedL11Norm, self).__init__(**kwargs) def __call__(self, x): r"""Returns the value of the MixedL11Norm function at x. :param x: :code:`BlockDataContainer` """ if not isinstance(x, BlockDataContainer): raise ValueError('__call__ expected BlockDataContainer, got {}'.format(type(x))) return x.abs().sum()
[docs] def proximal(self, x, tau, out = None): r"""Returns the value of the proximal operator of the MixedL11Norm function at x. .. math:: \mathrm{prox}_{\tau F}(x) = \mathrm{ShinkOperator}(x) where, .. math :: \mathrm{prox}_{\tau F}(x) = \mathrm{ShinkOperator}(x) := sgn(x) * \max\{ |x| - \tau, 0 \} """ if not isinstance(x, BlockDataContainer): raise ValueError('__call__ expected BlockDataContainer, got {}'.format(type(x))) return soft_shrinkage(x, tau, out = out)