Source code for cil.optimisation.functions.Rosenbrock
# Copyright 2019 United Kingdom Research and Innovation
# Copyright 2019 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors:
# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
import numpy
from cil.optimisation.functions import Function
from cil.framework import VectorData, VectorGeometry
[docs]
class Rosenbrock(Function):
r'''Rosenbrock function
.. math::
F(x,y) = (\alpha - x)^2 + \beta(y-x^2)^2
The function has a global minimum at .. math:: (x,y)=(\alpha, \alpha^2)
'''
def __init__(self, alpha, beta):
super(Rosenbrock, self).__init__()
self.alpha = alpha
self.beta = beta
def __call__(self, x):
if not isinstance(x, VectorData):
raise TypeError('Rosenbrock function works on VectorData only')
vec = x.as_array()
a = (self.alpha - vec[0])
b = (vec[1] - (vec[0]*vec[0]))
return a * a + self.beta * b * b
[docs]
def gradient(self, x, out=None):
r'''Gradient of the Rosenbrock function
.. math::
\nabla f(x,y) = \left[ 2*((x-\alpha) - 2\beta x(y-x^2)) ; 2\beta (y - x^2) \right]
'''
if not isinstance(x, VectorData):
raise TypeError('Rosenbrock function works on VectorData only')
vec = x.as_array()
a = (vec[0] - self.alpha)
b = (vec[1] - (vec[0]*vec[0]))
res = numpy.empty_like(vec)
res[0] = 2 * ( a - 2 * self.beta * vec[0] * b)
res[1] = 2 * self.beta * b
if out is not None:
out.fill(res)
return out
else:
return VectorData(res)