Source code for cil.plugins.astra.processors.FBP

#  Copyright 2019 United Kingdom Research and Innovation
#  Copyright 2019 The University of Manchester
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
# Authors:
# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
from cil.framework import DataProcessor
from cil.framework.labels import ImageDimension, AcquisitionDimension, AcquisitionType
from cil.plugins.astra.processors.FBP_Flexible import FBP_Flexible
from cil.plugins.astra.processors.FDK_Flexible import FDK_Flexible
from cil.plugins.astra.processors.FBP_Flexible import FBP_CPU


[docs] class FBP(DataProcessor): """ FBP configures and calls an appropriate ASTRA FBP or FDK algorithm for your dataset. The best results will be on data with circular trajectories of a 2PI angular range and equally spaced small angular steps. Parameters ---------- image_geometry : ImageGeometry, default used if None A description of the area/volume to reconstruct acquisition_geometry : AcquisitionGeometry A description of the acquisition data device : string, default='gpu' 'gpu' will run on a compatible CUDA capable device using the ASTRA FDK_CUDA algorithm 'cpu' will run on CPU using the ASTRA FBP algorithm - see Notes for limitations Example ------- >>> from cil.plugins.astra import FBP >>> fbp = FBP(image_geometry, data.geometry) >>> fbp.set_input(data) >>> reconstruction = fbp.get_output() Notes ----- A CPU version is provided for simple 2D parallel-beam geometries only, any offsets and rotations in the acquisition geometry will be ignored. This uses the ram-lak filter only. """ def __init__(self, image_geometry=None, acquisition_geometry=None, device='gpu'): if acquisition_geometry is None: raise TypeError("Please specify an acquisition_geometry to configure this processor") if image_geometry is None: image_geometry = acquisition_geometry.get_ImageGeometry() AcquisitionDimension.check_order_for_engine('astra', acquisition_geometry) ImageDimension.check_order_for_engine('astra', image_geometry) if device == 'gpu': if acquisition_geometry.geom_type == 'parallel': processor = FBP_Flexible(image_geometry, acquisition_geometry) else: processor = FDK_Flexible(image_geometry, acquisition_geometry) else: UserWarning("ASTRA back-projector running on CPU will not make use of enhanced geometry parameters") if acquisition_geometry.geom_type == 'cone': raise NotImplementedError("Cannot process cone-beam data without a GPU") if AcquisitionType.DIM2 & acquisition_geometry.dimension: processor = FBP_CPU(image_geometry, acquisition_geometry) else: raise NotImplementedError("Cannot process 3D data without a GPU") if acquisition_geometry.channels > 1: raise NotImplementedError("Cannot process multi-channel data") #processor_full = ChannelwiseProcessor(processor, self.acquisition_geometry.channels, dimension='prepend') #self.processor = operator_full super(FBP, self).__init__( image_geometry=image_geometry, acquisition_geometry=acquisition_geometry, device=device, processor=processor)
[docs] def set_input(self, dataset): return self.processor.set_input(dataset)
def get_input(self): return self.processor.get_input()
[docs] def get_output(self, out=None): return self.processor.get_output(out=out)
def check_input(self, dataset): return self.processor.check_input(dataset) def check_output(self, out): return self.processor.check_output(out=out) def process(self, out=None): return self.processor.process(out=out)