Source code for cil.plugins.tigre.FBP
# Copyright 2021 United Kingdom Research and Innovation
# Copyright 2021 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors:
# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
import contextlib
import io
import numpy as np
from cil.framework import DataProcessor, ImageData
from cil.framework.labels import AcquisitionDimension, ImageDimension
from cil.plugins.tigre import CIL2TIGREGeometry
try:
from tigre.algorithms import fdk, fbp
except ModuleNotFoundError:
raise ModuleNotFoundError("This plugin requires the additional package TIGRE\n" +
"Please install it via conda as tigre from the ccpi channel")
[docs]
class FBP(DataProcessor):
'''FBP Filtered Back Projection is a reconstructor for 2D and 3D parallel and cone-beam geometries.
It is able to back-project circular trajectories with 2 PI angular range and equally spaced angular steps.
This uses the ram-lak filter
This is provided for simple and offset parallel-beam geometries only
acquisition_geometry : AcquisitionGeometry
A description of the acquisition data
image_geometry : ImageGeometry, default used if None
A description of the area/volume to reconstruct
Example
-------
>>> from cil.plugins.tigre import FBP
>>> fbp = FBP(image_geometry, data.geometry)
>>> fbp.set_input(data)
>>> reconstruction = fbp.get_output()
'''
def __init__(self, image_geometry=None, acquisition_geometry=None, **kwargs):
if acquisition_geometry is None:
raise TypeError("Please specify an acquisition_geometry to configure this processor")
if image_geometry is None:
image_geometry = acquisition_geometry.get_ImageGeometry()
device = kwargs.get('device', 'gpu')
if device != 'gpu':
raise ValueError("TIGRE FBP is GPU only. Got device = {}".format(device))
AcquisitionDimension.check_order_for_engine('tigre', acquisition_geometry)
ImageDimension.check_order_for_engine('tigre', image_geometry)
tigre_geom, tigre_angles = CIL2TIGREGeometry.getTIGREGeometry(image_geometry,acquisition_geometry)
super(FBP, self).__init__( image_geometry = image_geometry, acquisition_geometry = acquisition_geometry,\
tigre_geom=tigre_geom, tigre_angles=tigre_angles)
def check_input(self, dataset):
if self.acquisition_geometry.channels != 1:
raise ValueError("Expected input data to be single channel, got {0}"\
.format(self.acquisition_geometry.channels))
AcquisitionDimension.check_order_for_engine('tigre', dataset.geometry)
return True
def _set_up(self):
"""
Configure processor attributes that require the data to setup
Must set _shape_out
"""
self._shape_out = self.image_geometry.shape
def process(self, out=None):
if self.tigre_geom.is2D:
data_temp = np.expand_dims(self.get_input().as_array(), axis=1)
if self.acquisition_geometry.geom_type == 'cone':
# suppress print statements from TIGRE https://github.com/CERN/TIGRE/issues/532
with contextlib.redirect_stdout(io.StringIO()):
arr_out = fdk(data_temp, self.tigre_geom, self.tigre_angles)
else:
arr_out = fbp(data_temp, self.tigre_geom, self.tigre_angles)
arr_out = np.squeeze(arr_out, axis=0)
else:
if self.acquisition_geometry.geom_type == 'cone':
# suppress print statements from TIGRE https://github.com/CERN/TIGRE/issues/532
with contextlib.redirect_stdout(io.StringIO()):
arr_out = fdk(self.get_input().as_array(), self.tigre_geom, self.tigre_angles)
else:
arr_out = fbp(self.get_input().as_array(), self.tigre_geom, self.tigre_angles)
if out is None:
out = ImageData(arr_out, deep_copy=False, geometry=self.image_geometry.copy(), suppress_warning=True)
return out
else:
out.fill(arr_out)