Source code for cil.plugins.tigre.FBP

#  Copyright 2021 United Kingdom Research and Innovation
#  Copyright 2021 The University of Manchester
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
# Authors:
# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
import contextlib
import io

import numpy as np

from cil.framework import DataProcessor, ImageData
from cil.framework.labels import AcquisitionDimension, ImageDimension
from cil.plugins.tigre import CIL2TIGREGeometry

try:
    from tigre.algorithms import fdk, fbp
except ModuleNotFoundError:
    raise ModuleNotFoundError("This plugin requires the additional package TIGRE\n" +
            "Please install it via conda as tigre from the ccpi channel")

[docs] class FBP(DataProcessor): '''FBP Filtered Back Projection is a reconstructor for 2D and 3D parallel and cone-beam geometries. It is able to back-project circular trajectories with 2 PI angular range and equally spaced angular steps. This uses the ram-lak filter This is provided for simple and offset parallel-beam geometries only acquisition_geometry : AcquisitionGeometry A description of the acquisition data image_geometry : ImageGeometry, default used if None A description of the area/volume to reconstruct Example ------- >>> from cil.plugins.tigre import FBP >>> fbp = FBP(image_geometry, data.geometry) >>> fbp.set_input(data) >>> reconstruction = fbp.get_output() ''' def __init__(self, image_geometry=None, acquisition_geometry=None, **kwargs): if acquisition_geometry is None: raise TypeError("Please specify an acquisition_geometry to configure this processor") if image_geometry is None: image_geometry = acquisition_geometry.get_ImageGeometry() device = kwargs.get('device', 'gpu') if device != 'gpu': raise ValueError("TIGRE FBP is GPU only. Got device = {}".format(device)) AcquisitionDimension.check_order_for_engine('tigre', acquisition_geometry) ImageDimension.check_order_for_engine('tigre', image_geometry) tigre_geom, tigre_angles = CIL2TIGREGeometry.getTIGREGeometry(image_geometry,acquisition_geometry) super(FBP, self).__init__( image_geometry = image_geometry, acquisition_geometry = acquisition_geometry,\ tigre_geom=tigre_geom, tigre_angles=tigre_angles) def check_input(self, dataset): if self.acquisition_geometry.channels != 1: raise ValueError("Expected input data to be single channel, got {0}"\ .format(self.acquisition_geometry.channels)) AcquisitionDimension.check_order_for_engine('tigre', dataset.geometry) return True def _set_up(self): """ Configure processor attributes that require the data to setup Must set _shape_out """ self._shape_out = self.image_geometry.shape def process(self, out=None): if self.tigre_geom.is2D: data_temp = np.expand_dims(self.get_input().as_array(), axis=1) if self.acquisition_geometry.geom_type == 'cone': # suppress print statements from TIGRE https://github.com/CERN/TIGRE/issues/532 with contextlib.redirect_stdout(io.StringIO()): arr_out = fdk(data_temp, self.tigre_geom, self.tigre_angles) else: arr_out = fbp(data_temp, self.tigre_geom, self.tigre_angles) arr_out = np.squeeze(arr_out, axis=0) else: if self.acquisition_geometry.geom_type == 'cone': # suppress print statements from TIGRE https://github.com/CERN/TIGRE/issues/532 with contextlib.redirect_stdout(io.StringIO()): arr_out = fdk(self.get_input().as_array(), self.tigre_geom, self.tigre_angles) else: arr_out = fbp(self.get_input().as_array(), self.tigre_geom, self.tigre_angles) if out is None: out = ImageData(arr_out, deep_copy=False, geometry=self.image_geometry.copy(), suppress_warning=True) return out else: out.fill(arr_out)