#  Copyright 2021 United Kingdom Research and Innovation
#  Copyright 2021 The University of Manchester
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
# Authors:
# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
import logging
import numpy as np
from cil.framework import ImageData, AcquisitionData, BlockGeometry
from cil.framework.labels import AcquisitionDimension, ImageDimension
from cil.optimisation.operators import BlockOperator, LinearOperator
from cil.plugins.tigre import CIL2TIGREGeometry
log = logging.getLogger(__name__)
try:
    from _Atb import _Atb_ext as Atb
    from _Ax import _Ax_ext as Ax
except ModuleNotFoundError:
    raise ModuleNotFoundError(
        "This plugin requires the additional package TIGRE\n" +
        "Please install it via conda as tigre from the ccpi channel")
try:
    from tigre.utilities.gpu import GpuIds
    has_gpu_sel = True
except ModuleNotFoundError:
    has_gpu_sel = False
[docs]
class ProjectionOperator(LinearOperator):
    """
        ProjectionOperator configures and calls TIGRE Projectors for your dataset.
        Please refer to the TIGRE documentation for further descriptions
        https://github.com/CERN/TIGRE
        https://iopscience.iop.org/article/10.1088/2057-1976/2/5/055010
        Parameters
        ----------
        image_geometry : `ImageGeometry`, default used if None
            A description of the area/volume to reconstruct
        acquisition_geometry :`AcquisitionGeometry`, `BlockGeometry`
            A description of the acquisition data. If passed a BlockGeometry it will return a BlockOperator.
        direct_method : str,  default 'interpolated'
            The method used by the forward projector, 'Siddon' for ray-voxel intersection, 'interpolated' for interpolated projection
        adjoint_weights : str, default 'matched'
            The weighting method used by the cone-beam backward projector, 'matched' for weights to approximately match the 'interpolated' forward projector, 'FDK' for FDK weights
        Example
        -------
        >>> from cil.plugins.tigre import ProjectionOperator
        >>> PO = ProjectionOperator(image.geometry, data.geometry)
        >>> forward_projection = PO.direct(image)
        >>> backward_projection = PO.adjoint(data)
        """
    def __new__(cls, image_geometry=None, acquisition_geometry=None, \
        
direct_method='interpolated',adjoint_weights='matched', **kwargs):
        if isinstance(acquisition_geometry, BlockGeometry):
            log.info("BlockOperator is returned.")
            K = []
            for ag in acquisition_geometry:
                K.append(
                    ProjectionOperator_ag(image_geometry=image_geometry, acquisition_geometry=ag, \
                        
direct_method=direct_method, adjoint_weights=adjoint_weights, **kwargs)
                )
            return BlockOperator(*K)
        else:
            log.info("Standard Operator is returned.")
            return super(ProjectionOperator,
                         cls).__new__(ProjectionOperator_ag) 
class ProjectionOperator_ag(ProjectionOperator):
    '''TIGRE Projection Operator'''
    def __init__(self,
                 image_geometry=None,
                 acquisition_geometry=None,
                 direct_method='interpolated',
                 adjoint_weights='matched',
                 **kwargs):
        """
        ProjectionOperator configures and calls TIGRE Projectors for your dataset.
        Please refer to the TIGRE documentation for further descriptions
        https://github.com/CERN/TIGRE
        https://iopscience.iop.org/article/10.1088/2057-1976/2/5/055010
        Parameters
        ----------
        image_geometry : ImageGeometry, default used if None
            A description of the area/volume to reconstruct
        acquisition_geometry : AcquisitionGeometry
            A description of the acquisition data
        direct_method : str,  default 'interpolated'
            The method used by the forward projector, 'Siddon' for ray-voxel intersection, 'interpolated' for interpolated projection
        adjoint_weights : str, default 'matched'
            The weighting method used by the cone-beam backward projector, 'matched' for weights to approximately match the 'interpolated' forward projector, 'FDK' for FDK weights
        Example
        -------
        >>> from cil.plugins.tigre import ProjectionOperator
        >>> PO = ProjectionOperator(image.geometry, data.geometry)
        >>> forward_projection = PO.direct(image)
        >>> backward_projection = PO.adjoint(data)
        """
        if acquisition_geometry is None:
            raise TypeError("Please specify an acquisition_geometry to configure this operator")
        if image_geometry == None:
            image_geometry = acquisition_geometry.get_ImageGeometry()
        device = kwargs.get('device', 'gpu')
        if device != 'gpu':
            raise ValueError(
                "TIGRE projectors are GPU only. Got device = {}".format(
                    device))
        ImageDimension.check_order_for_engine('tigre', image_geometry)
        AcquisitionDimension.check_order_for_engine('tigre', acquisition_geometry)
        super(ProjectionOperator,self).__init__(domain_geometry=image_geometry,\
             range_geometry=acquisition_geometry)
        if direct_method not in ['interpolated', 'Siddon']:
            raise ValueError(
                "direct_method expected 'interpolated' or 'Siddon' got {}".
                format(direct_method))
        if adjoint_weights not in ['matched', 'FDK']:
            raise ValueError(
                "adjoint_weights expected 'matched' or 'FDK' got {}".format(
                    adjoint_weights))
        self.method = {'direct': direct_method, 'adjoint': adjoint_weights}
        #set up TIGRE geometry
        tigre_geom, tigre_angles = CIL2TIGREGeometry.getTIGREGeometry(
            image_geometry, acquisition_geometry)
        tigre_geom.check_geo(tigre_angles)
        tigre_geom.cast_to_single()
        self.tigre_geom = tigre_geom
        #set up TIGRE GPU targets (from 2.2)
        if has_gpu_sel:
            self.gpuids = GpuIds()
    def __call_Ax(self, data):
        if has_gpu_sel:
            return Ax(data, self.tigre_geom, self.tigre_geom.angles,
                      self.method['direct'], self.tigre_geom.mode, self.gpuids)
        else:
            return Ax(data, self.tigre_geom, self.tigre_geom.angles,
                      self.method['direct'], self.tigre_geom.mode)
    def direct(self, x, out=None):
        data = x.as_array()
        if self.tigre_geom.is2D:
            data_temp = np.expand_dims(data, axis=0)
            arr_out = self.__call_Ax(data_temp)
            arr_out = np.squeeze(arr_out, axis=1)
        else:
            arr_out = self.__call_Ax(data)
        #if single angle projection remove the dimension for CIL
        if arr_out.shape[0] == 1:
            arr_out = np.squeeze(arr_out, axis=0)
        if out is None:
            out = AcquisitionData(arr_out,
                                  deep_copy=False,
                                  geometry=self._range_geometry.copy())
        else:
            out.fill(arr_out)
        return out
    def __call_Atb(self, data):
        if has_gpu_sel:
            return Atb(data, self.tigre_geom, self.tigre_geom.angles,
                       self.method['adjoint'], self.tigre_geom.mode,
                       self.gpuids)
        else:
            return Atb(data, self.tigre_geom, self.tigre_geom.angles,
                       self.method['adjoint'], self.tigre_geom.mode)
    def adjoint(self, x, out=None):
        data = x.as_array()
        #if single angle projection add the dimension in for TIGRE
        if x.dimension_labels[0] != AcquisitionDimension.ANGLE:
            data = np.expand_dims(data, axis=0)
        if self.tigre_geom.is2D:
            data = np.expand_dims(data, axis=1)
            arr_out = self.__call_Atb(data)
            arr_out = np.squeeze(arr_out, axis=0)
        else:
            arr_out = self.__call_Atb(data)
        if out is None:
            out = ImageData(arr_out,
                            deep_copy=False,
                            geometry=self._domain_geometry.copy())
        else:
            out.fill(arr_out)
        return out
    def domain_geometry(self):
        return self._domain_geometry
    def range_geometry(self):
        return self._range_geometry