Source code for cil.processors.CentreOfRotationCorrector

#  Copyright 2020 United Kingdom Research and Innovation
#  Copyright 2020 The University of Manchester
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
# Authors:
# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt

from cil.framework import DataProcessor
from cil.processors.CofR_xcorrelation import CofR_xcorrelation
from cil.processors.CofR_image_sharpness import CofR_image_sharpness


[docs] class CentreOfRotationCorrector(DataProcessor): """ This class contains methods to create a CentreOfRotationCorrector processor using the desired algorithm. """
[docs] @staticmethod def xcorrelation(slice_index='centre', projection_index=0, ang_tol=0.1): r'''This creates a CentreOfRotationCorrector processor using the cross-correlation algorithm. For use on parallel-beam geometry it requires two projections 180 degree apart. Parameters ---------- slice_index: int or str, optional An integer defining the vertical slice to run the algorithm on or string='centre' specifying the central slice should be used (default is 'centre') projection_index: int or list/tuple of ints, optional An integer defining the index of the first projection the cross correlation algorithm will use, where the second projection is chosen as the projection closest to 180 degrees from this. Or a list/tuple of ints specifying the two indices to be used for cross correlation (default is 0) ang_tol: float, optional The angular tolerance in degrees between the two input projections 180 degree gap (default is 0.1) Example ------- >>> from cil.processors import CentreOfRotationCorrector >>> processor = CentreOfRotationCorrector.xcorrelation('centre') >>> processor.set_input(data) >>> data_centred = processor.get_ouput() Example ------- >>> from cil.processors import CentreOfRotationCorrector >>> processor = CentreOfRotationCorrector.xcorrelation(slice_index=120) >>> processor.set_input(data) >>> processor.get_ouput(out=data) Example ------- >>> from cil.processors import CentreOfRotationCorrector >>> import logging >>> logging.basicConfig(level=logging.WARNING) >>> cil_log_level = logging.getLogger('cil.processors') >>> cil_log_level.setLevel(logging.DEBUG) >>> processor = CentreOfRotationCorrector.xcorrelation(slice_index=120) >>> processor.set_input(data) >>> data_centred = processor.get_output() Note ---- setting logging to 'debug' will give you more information about the algorithm progress ''' processor = CofR_xcorrelation(slice_index, projection_index, ang_tol) return processor
[docs] @staticmethod def image_sharpness(slice_index='centre', backend='tigre', tolerance=0.005, search_range=None, initial_binning=None): """This creates a CentreOfRotationCorrector processor. The processor will find the centre offset by maximising the sharpness of a reconstructed slice. Can be used on single slice parallel-beam, and centre slice cone beam geometry. For use only with datasets that can be reconstructed with FBP/FDK. Parameters ---------- slice_index : int, str, default='centre' An integer defining the vertical slice to run the algorithm on. The special case slice 'centre' is the default. backend : {'tigre', 'astra'} The backend to use for the reconstruction tolerance : float, default=0.005 The tolerance of the fit in pixels, the default is 1/200 of a pixel. This is a stopping criteria, not a statement of accuracy of the algorithm. search_range : int The range in pixels to search either side of the panel centre. If `None` a quarter of the width of the panel is used. initial_binning : int The size of the bins for the initial search. If `None` will bin the image to a step corresponding to <128 pixels. The fine search will be on unbinned data. Example ------- from cil.processors import CentreOfRotationCorrector processor = CentreOfRotationCorrector.image_sharpness('centre', 'tigre') processor.set_input(data) data_centred = processor.get_output() Example ------- from cil.processors import CentreOfRotationCorrector processor = CentreOfRotationCorrector.image_sharpness(slice_index=120, 'astra') processor.set_input(data) processor.get_output(out=data) Note ---- For best results data should be 360deg which leads to blurring with incorrect geometry. This method is unreliable on half-scan data with 'tuning-fork' style artifacts. """ processor = CofR_image_sharpness(slice_index=slice_index, backend=backend, tolerance=tolerance, search_range=search_range, initial_binning=initial_binning) return processor