Source code for cil.processors.TransmissionAbsorptionConverter
# Copyright 2021 United Kingdom Research and Innovation
# Copyright 2021 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors:
# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
from cil.framework import DataProcessor, AcquisitionData, ImageData, DataContainer
import warnings
import numpy
[docs]
class TransmissionAbsorptionConverter(DataProcessor):
r'''Processor to convert from transmission measurements to absorption
based on the Beer-Lambert law
:param white_level: A float defining incidence intensity in the Beer-Lambert law.
:type white_level: float, optional
:param min_intensity: A float defining some threshold to avoid 0 in log, is applied after normalisation by white_level
:type min_intensity: float, optional
:return: returns AcquisitionData, ImageData or DataContainer depending on input data type, return is suppressed if 'out' is passed
:rtype: AcquisitionData, ImageData or DataContainer
Processor first divides by white_level (default=1) and then take negative logarithm.
Elements below threshold (after division by white_level) are set to threshold.
'''
def __init__(self,
min_intensity = 0.0,
white_level = 1.0
):
kwargs = {'min_intensity': min_intensity,
'white_level': white_level}
super(TransmissionAbsorptionConverter, self).__init__(**kwargs)
def check_input(self, data):
if not (issubclass(type(data), DataContainer)):
raise TypeError('Processor supports only following data types:\n' +
' - ImageData\n - AcquisitionData\n' +
' - DataContainer')
if data.min() <= 0 and self.min_intensity <= 0:
raise ValueError('Zero or negative values found in the dataset. Please use `min_intensity` to provide a clipping value.')
return True
def process(self, out=None):
data = self.get_input()
if out is None:
out = data.geometry.allocate(None)
arr_in = data.as_array()
arr_out = out.as_array()
#whitelevel
if self.white_level != 1:
numpy.divide(arr_in, self.white_level, out=arr_out)
arr_in = arr_out
#threshold
if self.min_intensity > 0:
numpy.clip(arr_in, self.min_intensity, None, out=arr_out)
arr_in = arr_out
#beer-lambert
numpy.log(arr_in,out=arr_out)
numpy.negative(arr_out,out=arr_out)
out.fill(arr_out)
return out