Source code for cil.processors.TransmissionAbsorptionConverter

#  Copyright 2021 United Kingdom Research and Innovation
#  Copyright 2021 The University of Manchester
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
# Authors:
# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt

from cil.framework import DataProcessor, AcquisitionData, ImageData, DataContainer
import warnings
import numpy


[docs] class TransmissionAbsorptionConverter(DataProcessor): r'''Processor to convert from transmission measurements to absorption based on the Beer-Lambert law :param white_level: A float defining incidence intensity in the Beer-Lambert law. :type white_level: float, optional :param min_intensity: A float defining some threshold to avoid 0 in log, is applied after normalisation by white_level :type min_intensity: float, optional :return: returns AcquisitionData, ImageData or DataContainer depending on input data type, return is suppressed if 'out' is passed :rtype: AcquisitionData, ImageData or DataContainer Processor first divides by white_level (default=1) and then take negative logarithm. Elements below threshold (after division by white_level) are set to threshold. ''' def __init__(self, min_intensity = 0.0, white_level = 1.0 ): kwargs = {'min_intensity': min_intensity, 'white_level': white_level} super(TransmissionAbsorptionConverter, self).__init__(**kwargs) def check_input(self, data): if not (issubclass(type(data), DataContainer)): raise TypeError('Processor supports only following data types:\n' + ' - ImageData\n - AcquisitionData\n' + ' - DataContainer') if data.min() <= 0 and self.min_intensity <= 0: raise ValueError('Zero or negative values found in the dataset. Please use `min_intensity` to provide a clipping value.') return True def process(self, out=None): data = self.get_input() if out is None: out = data.geometry.allocate(None) arr_in = data.as_array() arr_out = out.as_array() #whitelevel if self.white_level != 1: numpy.divide(arr_in, self.white_level, out=arr_out) arr_in = arr_out #threshold if self.min_intensity > 0: numpy.clip(arr_in, self.min_intensity, None, out=arr_out) arr_in = arr_out #beer-lambert numpy.log(arr_in,out=arr_out) numpy.negative(arr_out,out=arr_out) out.fill(arr_out) return out