# Copyright 2021 United Kingdom Research and Innovation
# Copyright 2021 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors:
# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
from cil.framework import cilacc
from cil.framework.labels import AcquisitionType
from cil.recon import Reconstructor
from scipy.fft import fftfreq
import numpy as np
import ctypes
from tqdm import tqdm
c_float_p = ctypes.POINTER(ctypes.c_float)
c_double_p = ctypes.POINTER(ctypes.c_double)
try:
cilacc.filter_projections_avh
has_ipp = True
except AttributeError:
has_ipp = False
if has_ipp:
cilacc.filter_projections_avh.argtypes = [ctypes.POINTER(ctypes.c_float), # pointer to the data array
ctypes.POINTER(ctypes.c_float), # pointer to the filter array
ctypes.POINTER(ctypes.c_float), # pointer to the weights array
ctypes.c_int16, #order of the fft
ctypes.c_long, #num_proj
ctypes.c_long, #pix_v
ctypes.c_long] #pix_x
cilacc.filter_projections_vah.argtypes = [ctypes.POINTER(ctypes.c_float), # pointer to the data array
ctypes.POINTER(ctypes.c_float), # pointer to the filter array
ctypes.POINTER(ctypes.c_float), # pointer to the weights array
ctypes.c_int16, #order of the fft
ctypes.c_long, #pix_v
ctypes.c_long, #num_proj
ctypes.c_long] #pix_x
class GenericFilteredBackProjection(Reconstructor):
"""
Abstract Base Class GenericFilteredBackProjection holding common and virtual methods for FBP and FDK
"""
@property
def filter(self):
return self._filter
@property
def filter_inplace(self):
return self._filter_inplace
@property
def fft_order(self):
return self._fft_order
def __init__ (self, input, image_geometry=None, filter='ram-lak', backend='tigre'):
#call parent initialiser
super().__init__(input, image_geometry, backend)
if not has_ipp:
raise ImportError("IPP libraries not found. Cannot use CIL FBP")
#additional check
if 'channel' in input.dimension_labels:
raise ValueError("Input data cannot be multi-channel")
#define defaults
self._fft_order = self._default_fft_order()
self.set_filter(filter)
self.set_filter_inplace(False)
self._weights = None
def set_filter_inplace(self, inplace=False):
"""
False (default) will allocate temporary memory for filtered projections.
True will filter projections in-place.
Parameters
----------
inplace: boolean
Sets the inplace filtering of projections
"""
if type(inplace) is bool:
self._filter_inplace= inplace
else:
raise TypeError("set_filter_inplace expected a boolean. Got {}".format(type(inplace)))
def _default_fft_order(self):
min_order = 0
while 2**min_order < self.acquisition_geometry.pixel_num_h * 2:
min_order+=1
min_order = max(8, min_order)
return min_order
def set_fft_order(self, order=None):
"""
The width of the fourier transform N=2^order.
Parameters
----------
order: int, optional
The width of the fft N=2^order
Notes
-----
If `None` the default used is the power-of-2 greater than 2 * detector width, or 8, whichever is greater
Higher orders will yield more accurate results but increase computation time.
"""
min_order = self._default_fft_order()
if order is None:
fft_order = min_order
else:
try:
fft_order = int(order)
except TypeError:
raise TypeError("fft order expected type `int`. Got{}".format(type(order)))
if fft_order < min_order:
raise ValueError("Minimum fft width 2^order is order = {0}. Got{1}".format(min_order,order))
if fft_order != self.fft_order:
self._fft_order = fft_order
if self.filter=='custom':
print("Filter length changed - please update your custom filter")
else:
#create default filter type of new length
self.set_filter(self._filter)
@property
def preset_filters(self):
return ['ram-lak', 'shepp-logan', 'cosine', 'hamming', 'hann']
def set_filter(self, filter='ram-lak', cutoff=1.0):
"""
Set the filter used by the reconstruction.
Pre-set filters are constructed in the frequency domain.
Pre-set filters are: 'ram-lak', 'shepp-logan', 'cosine', 'hamming', 'hann'
Parameters
----------
filter : string, numpy.ndarray, default='ram-lak'
Pass a string selecting from the list of pre-set filters, or pass a numpy.ndarray with a custom filter.
cutoff : float, default = 1
The cut-off frequency of the filter between 0 - 1 pi rads/pixel. The filter will be 0 outside the range rect(-frequency_cutoff, frequency_cutoff)
Notes
-----
If passed a numpy array the filter must have length N = 2^self.fft_order
The indices of the array are interpreted as:
- [0] The DC frequency component
- [1:N/2] positive frequencies
- [N/2:N-1] negative frequencies
"""
if type(filter)==str and filter in self.preset_filters:
self._filter = filter
self._filter_cutoff = cutoff
self._filter_array = None
elif type(filter)==np.ndarray:
try:
filter_array = np.asarray(filter,dtype=np.float32).reshape(2**self.fft_order)
self._filter_array = filter_array.copy()
self._filter = 'custom'
except ValueError:
raise ValueError("Custom filter not compatible with input.")
else:
raise ValueError("Filter not recognised")
def get_filter_array(self):
"""
Returns the filter array in the frequency domain.
Returns
-------
numpy.ndarray
An array containing the filter values
Notes
-----
The filter length N is 2^self.fft_order.
The indices of the array are interpreted as:
- [0] The DC frequency component
- [1:N/2] positive frequencies
- [N/2:N-1] negative frequencies
The array can be modified and passed back using set_filter()
Notes
-----
Filter reference in frequency domain:
Eq. 1.12 - 1.15 T. M. Buzug. Computed Tomography: From Photon Statistics to Modern Cone-Beam CT. Berlin: Springer, 2008.
Plantagie, L. Algebraic filters for filtered backprojection, 2017
https://hdl.handle.net/1887/48289
"""
if self._filter == 'custom':
return self._filter_array
filter_length = 2**self.fft_order
# frequency bins in cycles/pixel
freq = fftfreq(filter_length)
# in pi rad/pixel
freq*=2
ramp = abs(freq)
ramp[ramp>self._filter_cutoff]=0
if self._filter == 'ram-lak':
filter_array = ramp
if self._filter == 'shepp-logan':
filter_array = ramp * np.sinc(freq/2)
elif self._filter == 'cosine':
filter_array = ramp * np.cos(freq*np.pi/2)
elif self._filter == 'hamming':
filter_array = ramp * (0.54 + 0.46 * np.cos(freq*np.pi))
elif self._filter == 'hann':
filter_array = ramp * (0.5 + 0.5 * np.cos(freq*np.pi))
return np.asarray(filter_array,dtype=np.float32).reshape(2**self.fft_order)
def plot_filter(self):
"""
Returns a plot of the filter array.
Returns
-------
matplotlib.pyplot
A plot of the filter
"""
try:
import matplotlib.pyplot as plt
except ImportError:
raise ImportError("matplotlib not found. Please install matplotlib to use this method")
filter_array = self.get_filter_array()
filter_length = 2**self.fft_order
freq = fftfreq(filter_length)
freq *= 2
ind_sorted = np.argsort(freq)
plt.figure()
plt.plot(freq[ind_sorted], filter_array[ind_sorted], label=self._filter, color='magenta')
plt.xlabel('Frequency (rads/pixel)')
plt.ylabel('Magnitude')
theta = np.linspace(-1, 1, 9, True)
plt.xticks(theta, ['-π', '-3π/4', '-π/2', '-π/4', '0', 'π/4', 'π/2', '3π/4', 'π'])
plt.legend()
return plt
def _calculate_weights(self):
return NotImplementedError
def _pre_filtering(self,acquistion_data):
"""
Filters and weights the projections inplace
Parameters
----------
acquistion_data : AcquisitionData
The projections to be filtered
Notes
-----
self.input is not used to allow processing in smaller chunks
"""
if self._weights is None or self._weights.shape[0] != acquistion_data.geometry.pixel_num_v:
self._calculate_weights(acquistion_data.geometry)
if self._weights.shape[1] != acquistion_data.shape[-1]: #horizontal
raise ValueError("Weights not compatible")
filter_array = self.get_filter_array()
if filter_array.size != 2**self.fft_order:
raise ValueError("Custom filter has length {0} and is not compatible with requested fft_order {1}. Expected filter length 2^{1}"\
.format(filter_array.size,self.fft_order))
#call ext function
data_ptr = acquistion_data.array.ctypes.data_as(c_float_p)
filter_ptr = filter_array.ctypes.data_as(c_float_p)
weights_ptr = self._weights.ctypes.data_as(c_float_p)
ag = acquistion_data.geometry
if ag.dimension_labels == ('angle','vertical','horizontal'):
cilacc.filter_projections_avh(data_ptr, filter_ptr, weights_ptr, self.fft_order, *acquistion_data.shape)
elif ag.dimension_labels == ('vertical','angle','horizontal'):
cilacc.filter_projections_vah(data_ptr, filter_ptr, weights_ptr, self.fft_order, *acquistion_data.shape)
elif ag.dimension_labels == ('angle','horizontal'):
cilacc.filter_projections_vah(data_ptr, filter_ptr, weights_ptr, self.fft_order, 1, *acquistion_data.shape)
elif ag.dimension_labels == ('vertical','horizontal'):
cilacc.filter_projections_avh(data_ptr, filter_ptr, weights_ptr, self.fft_order, 1, *acquistion_data.shape)
else:
raise ValueError ("Could not determine correct function call from dimension labels")
def reset(self):
"""
Resets all optional configuration parameters to their default values
"""
self.set_filter()
self.set_fft_order()
self.set_filter_inplace()
self.set_image_geometry()
self._weights = None
def run(self, out=None):
NotImplementedError
[docs]
class FDK(GenericFilteredBackProjection):
"""
Creates an FDK reconstructor based on your cone-beam acquisition data using TIGRE as a backend.
Parameters
----------
input : AcquisitionData
The input data to reconstruct. The reconstructor is set-up based on the geometry of the data.
image_geometry : ImageGeometry, default used if None
A description of the area/volume to reconstruct
filter : string, numpy.ndarray, default='ram-lak'
The filter to be applied. Can be a string from: {'`ram-lak`', '`shepp-logan`', '`cosine`', '`hamming`', '`hann`'}, or a numpy array.
Example
-------
>>> from cil.utilities.dataexample import SIMULATED_CONE_BEAM_DATA
>>> from cil.recon import FDK
>>> data = SIMULATED_CONE_BEAM_DATA.get()
>>> fdk = FDK(data)
>>> out = fdk.run()
Notes
-----
The reconstructor can be futher customised using additional 'set' methods provided.
"""
supported_backends = ['tigre']
def __init__ (self, input, image_geometry=None, filter='ram-lak'):
#call parent initialiser
super().__init__(input, image_geometry, filter, backend='tigre')
if not AcquisitionType.CONE & input.geometry.geom_type:
raise TypeError("This reconstructor is for cone-beam data only.")
def _calculate_weights(self, acquisition_geometry):
ag = acquisition_geometry
xv = np.arange(-(ag.pixel_num_h -1)/2,(ag.pixel_num_h -1)/2 + 1,dtype=np.float32) * ag.pixel_size_h
yv = np.arange(-(ag.pixel_num_v -1)/2,(ag.pixel_num_v -1)/2 + 1,dtype=np.float32) * ag.pixel_size_v
(yy, xx) = np.meshgrid(xv, yv)
principal_ray_length = ag.dist_source_center + ag.dist_center_detector
scaling = 0.25 * ag.magnification * (2 * np.pi/ ag.num_projections) / ag.pixel_size_h
self._weights = scaling * principal_ray_length / np.sqrt((principal_ray_length ** 2 + xx ** 2 + yy ** 2))
[docs]
def run(self, out=None, verbose=1):
"""
Runs the configured FDK recon and returns the reconstruction.
Parameters
----------
out : ImageData, optional
Fills the referenced ImageData with the reconstructed volume and suppresses the return
verbose : int, default=1
Controls the verbosity of the reconstructor. 0: No output is logged, 1: Full configuration is logged
Returns
-------
ImageData
The reconstructed volume. Suppressed if `out` is passed
"""
if verbose:
print(self)
if self.filter_inplace is False:
proj_filtered = self.input.copy()
else:
proj_filtered = self.input
self._pre_filtering(proj_filtered)
operator = self._PO_class(self.image_geometry,self.acquisition_geometry,adjoint_weights='FDK')
if out is None:
return operator.adjoint(proj_filtered)
else:
operator.adjoint(proj_filtered, out = out)
def __str__(self):
repres = "FDK recon\n"
repres += self._str_data_size()
repres += "\nReconstruction Options:\n"
repres += "\tBackend: {}\n".format(self._backend)
repres += "\tFilter: {}\n".format(self._filter)
if self._filter != 'custom':
repres += "\tFilter cut-off frequency: {}\n".format(self._filter_cutoff)
repres += "\tFFT order: {}\n".format(self._fft_order)
repres += "\tFilter_inplace: {}\n".format(self._filter_inplace)
return repres
[docs]
class FBP(GenericFilteredBackProjection):
"""
Creates an FBP reconstructor based on your parallel-beam acquisition data.
Parameters
----------
input : AcquisitionData
The input data to reconstruct. The reconstructor is set-up based on the geometry of the data.
image_geometry : ImageGeometry, default used if None
A description of the area/volume to reconstruct
filter : string, numpy.ndarray, default='ram-lak'
The filter to be applied. Can be a string from: {'`ram-lak`', '`shepp-logan`', '`cosine`', '`hamming`', '`hann`'}, or a numpy array.
backend : string
The backend to use, can be 'astra' or 'tigre'. Data must be in the correct order for requested backend.
Example
-------
>>> from cil.utilities.dataexample import SIMULATED_PARALLEL_BEAM_DATA
>>> from cil.recon import FBP
>>> data = SIMULATED_PARALLEL_BEAM_DATA.get()
>>> fbp = FBP(data)
>>> out = fbp.run()
Notes
-----
The reconstructor can be further customised using additional 'set' methods provided.
"""
supported_backends = ['tigre', 'astra']
@property
def slices_per_chunk(self):
return self._slices_per_chunk
def __init__ (self, input, image_geometry=None, filter='ram-lak', backend='tigre'):
super().__init__(input, image_geometry, filter, backend)
self.set_split_processing(False)
if not AcquisitionType.PARALLEL & input.geometry.geom_type:
raise TypeError("This reconstructor is for parallel-beam data only.")
[docs]
def set_split_processing(self, slices_per_chunk=0):
"""
Splits the processing in to chunks. Default, 0 will process the data in a single call.
Parameters
----------
out : slices_per_chunk, optional
Process the data in chunks of n slices. It is recommended to use value of power-of-two.
Notes
-----
This will reduce memory use but may increase computation time.
It is recommended to tune it too your hardware requirements using 8, 16 or 32 slices.
This can only be used on simple and offset data-geometries.
"""
try:
num_slices = int(slices_per_chunk)
except:
num_slices = 0
if num_slices >= self.acquisition_geometry.pixel_num_v:
num_slices = self.acquisition_geometry.pixel_num_v
self._slices_per_chunk = num_slices
def _calculate_weights(self, acquisition_geometry):
ag = acquisition_geometry
scaling = 0.25 * (2 * np.pi/ ag.num_projections) / ag.pixel_size_h
if self.backend=='astra':
scaling /= ag.pixel_size_v
self._weights = np.full((ag.pixel_num_v,ag.pixel_num_h),scaling,dtype=np.float32)
def _setup_PO_for_chunks(self, num_slices):
if num_slices > 1:
ag_slice = self.acquisition_geometry.copy()
ag_slice.pixel_num_v = num_slices
else:
ag_slice = self.acquisition_geometry.get_slice(vertical=0)
ig_slice = ag_slice.get_ImageGeometry()
self.data_slice = ag_slice.allocate()
self.operator = self._PO_class(ig_slice,ag_slice)
def _process_chunk(self, i, step):
self.data_slice.fill(np.squeeze(self.input.array[:,i:i+step,:]))
if not self.filter_inplace:
self._pre_filtering(self.data_slice)
return self.operator.adjoint(self.data_slice).array
[docs]
def run(self, out=None, verbose=1):
"""
Runs the configured FBP recon and returns the reconstruction
Parameters
----------
out : ImageData, optional
Fills the referenced ImageData with the reconstructed volume and suppresses the return
verbose : int, default=1
Controls the verbosity of the reconstructor. 0: No output is logged, 1: Full configuration is logged
Returns
-------
ImageData
The reconstructed volume. Suppressed if `out` is passed
"""
if verbose:
print(self)
if self.slices_per_chunk:
if AcquisitionType.DIM2 & self.acquisition_geometry.dimension:
raise ValueError("Only 3D datasets can be processed in chunks with `set_split_processing`")
elif self.acquisition_geometry.system_description == 'advanced':
raise ValueError("Only simple and offset geometries can be processed in chunks with `set_split_processing`")
elif self.acquisition_geometry.get_ImageGeometry() != self.image_geometry:
raise ValueError("Only default image geometries can be processed in chunks `set_split_processing`")
if out is None:
ret = self.image_geometry.allocate()
else:
ret = out
if self.filter_inplace:
self._pre_filtering(self.input)
tot_slices = self.acquisition_geometry.pixel_num_v
remainder = tot_slices % self.slices_per_chunk
num_chunks = int(np.ceil(self.image_geometry.shape[0] / self._slices_per_chunk))
if verbose:
pbar = tqdm(total=num_chunks)
#process dataset by requested chunk size
self._setup_PO_for_chunks(self.slices_per_chunk)
for i in range(0, tot_slices-remainder, self.slices_per_chunk):
if 'bottom' in self.acquisition_geometry.config.panel.origin:
start = i
end = i + self.slices_per_chunk
else:
start = tot_slices -i - self.slices_per_chunk
end = tot_slices - i
ret.array[start:end,:,:] = self._process_chunk(i, self.slices_per_chunk)
if verbose:
pbar.update(1)
#process excess rows
if remainder:
self._setup_PO_for_chunks(remainder)
if 'bottom' in self.acquisition_geometry.config.panel.origin:
start = tot_slices-remainder
end = tot_slices
else:
start = 0
end = remainder
ret.array[start:end,:,:] = self._process_chunk(i, remainder)
if verbose:
pbar.update(1)
if verbose:
pbar.close()
if out is None:
return ret
else:
if self.filter_inplace is False:
proj_filtered = self.input.copy()
else:
proj_filtered = self.input
self._pre_filtering(proj_filtered)
operator = self._PO_class(self.image_geometry,self.acquisition_geometry)
if out is None:
return operator.adjoint(proj_filtered)
else:
operator.adjoint(proj_filtered, out = out)
[docs]
def reset(self):
"""
Resets all optional configuration parameters to their default values
"""
super().reset()
self.set_split_processing(0)
def __str__(self):
repres = "FBP recon\n"
repres += self._str_data_size()
repres += "\nReconstruction Options:\n"
repres += "\tBackend: {}\n".format(self._backend)
repres += "\tFilter: {}\n".format(self._filter)
if self._filter != 'custom':
repres += "\tFilter cut-off frequency: {}\n".format(self._filter_cutoff)
repres += "\tFFT order: {}\n".format(self._fft_order)
repres += "\tFilter_inplace: {}\n".format(self._filter_inplace)
repres += "\tSplit processing: {}\n".format(self._slices_per_chunk)
if self._slices_per_chunk:
num_chunks = int(np.ceil(self.image_geometry.shape[0] / self._slices_per_chunk))
else:
num_chunks = 1
repres +="\nReconstructing in {} chunk(s):\n".format(num_chunks)
return repres